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ABSTRACT
Can one use cell phones for earthquake early warning? Detecting
rare, disruptive events using community-held sensors is a promising
opportunity, but also presents difficult challenges. Rare events are
often difficult or impossible to model and characterize a priori, yet
we wish to maximize detection performance. Further, heteroge-
neous, community-operated sensors may differ widely in quality
and communication constraints.

In this paper, we present a principled approach towards detecting
rare events that learns sensor-specific decision thresholds online, in
a distributed way. It maximizes anomaly detection performance at a
fusion center, under constraints on the false alarm rate and number
of messages per sensor. We then present an implementation of our
approach in the Community Seismic Network (CSN), a commu-
nity sensing system with the goal of rapidly detecting earthquakes
using cell phone accelerometers, consumer USB devices and cloud-
computing based sensor fusion. We experimentally evaluate our
approach based on a pilot deployment of the CSN system. Our
results, including data from shake table experiments, indicate the
effectiveness of our approach in distinguishing seismic motion from
accelerations due to normal daily manipulation. They also provide
evidence of the feasibility of earthquake early warning using a dense
network of cell phones.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Architec-
ture and Design; G.3 [Probability and Statistics]: Experimental
Design; I.2.6 [AI]: Learning

General Terms
Algorithms, Measurement

Keywords
Sensor networks, community sensing, distributed anomaly detection

1. INTRODUCTION
Privately owned commercial devices equipped with sensors are

emerging as a powerful resource for sensor networks. Community
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sensing projects are using smart phones to monitor traffic and detect
accidents [13, 17, 15]; monitor and improve population health [5],
and map pollution [18, 29]. Detecting rare, disruptive events, such as
earthquakes, using community-held sensors is a particularly promis-
ing opportunity [4], but also presents difficult challenges. Rare
events are often difficult or impossible to model and characterize
a priori, yet we wish to maximize detection performance. Further,
heterogeneous, community-operated sensors may differ widely in
quality and communication constraints, due to variability in hard-
ware and software platforms, as well as differing in environmental
conditions.

In this paper, we present a principled approach towards detecting
rare events from community-based sensors. Due to the unavailabil-
ity of data characterizing the rare events, our approach is based
on anomaly detection; sensors learn models of normal sensor data
(e.g., acceleration patterns experienced by smartphones under typi-
cal manipulation). Each sensor then independently detects unusual
observations (which are considered unlikely with respect to the
model), and notifies a fusion center. The fusion center then decides
whether a rare event has occurred or not, based on the received
messages. Our approach is grounded in the theory of decentral-
ized detection, and we characterize its performance accordingly.
In particular, we show how sensors can learn decision rules that
allow us to control system-level false positive rates and bound the
amount of required communication in a principled manner while
simultaneously maximizing the detection performance.

As our second main contribution, we present an implementation
of our approach in the Community Seismic Network (CSN). The goal
of our community sensing system is to detect seismic motion using
accelerometers in smartphones and other consumer devices (Fig-
ure 1(c)), and issue real-time early-warning of seismic hazards (see
Figure 1(a)). The duration of the warning is the time between a per-
son or device receiving the alert and the onset of significant shaking
(see Figure 1(b)); this duration depends on the distance between the
location of initial shaking and the location of the receiving device,
and on delays within the network and fusion center. Warnings of
up to tens of seconds are possible [1], and even warnings of a few
seconds help in stopping elevators, slowing trains, and closing gas
valves. Since false alarms can have high costs, it is important to
limit the false positive rate of the system.

Using community-based sensors for earthquake early warning
is particularly challenging due to the large variety of sensor types,
sensor locations, and ambient noise characteristics. For example,
a sensor near a construction site will have different behavior than
a sensor in a quiet zone. Moreover, sensor behavior may change
over time; for example, construction may start in some places and
stop in others. With thousands of sensors, one cannot expect to
know the precise characteristics of each sensor at each point in time;



(a) Earthquake (Chino Hills, Magn. 5.4, July 2008)

Shaking in:4.1 s

(b) Early warning (c) Phidget sensor with housing

Figure 1: (a) Seismic waves (P- and S-waves) during an earthquake. (b) Anticipated user interface for early warning using our
Google Android application. (c) 16-bit USB MEMS accelerometers with housing that we used in our initial deployment.

these characteristics have to be deduced by algorithms. A system
that scales to tens of thousands or millions of sensors must limit the
rate of message traffic so that it can be handled efficiently by the
network and fusion center. For example, one million phones would
produce approximately 30 Terabytes of accelerometer data each
day. Another key challenge is to develop a system infrastructure
that has low response time even under peak load (messages sent by
millions of phones during an earthquake). Moreover, the Internet
and computers in a quake zone are likely to fail with the onset
of intensive shaking. So, data from sensors must be sent out to a
distributed, resilient system that has data centers outside the quake
zone. The CSN uses cloud-computing based sensor fusion to cope
with these challenges. In this paper, we report our initial experience
with the CSN, and experimentally evaluate our detection approach
based on data from a pilot deployment. Our results, including data
from shaketable experiments that allow us to mechanically play
back past earthquakes, indicate the effectiveness of our approach
in distinguishing seismic motion from accelerations due to normal
daily manipulation. They also provide evidence for the feasibility
of earthquake early warning using a dense network of cell phones.

In summary, our main contributions are

• a novel approach for online decentralized anomaly detection,
• a theoretical analysis, characterizing the performance of our

detection approach,
• an implementation of our approach in the Community Seismic

Network, involving smartphones, USB MEMS accelerome-
ters and cloud-computing based sensor fusion, and
• a detailed empirical evaluation of our approach characteriz-

ing the achievable detection performance when using smart-
phones to detect earthquakes.

2. PROBLEM STATEMENT
We consider the problem of decentralized detection of rare events,

such as earthquakes, under constraints on the number of messages
sent by each sensor. Specifically, a set of N sensors make repeated
observations Xt = (X1,t, . . . , XN,t) from which we would like to
detect the occurrence of an event Et ∈ {0, 1}. Here, Xs,t is the
measurement of sensor s at time t, and Et = 1 iff there is an event
(e.g., an earthquake) at time t. Xs,t may be a scalar (e.g., acceler-
ation), or a vector of features containing information about Fourier
frequencies, moments, etc. during a sliding window of data (see
Section 4.2 for a discussion of features that we use in our system).

We are interested in the decentralized setting, where each sensor
s analyzes its measurements Xs,t, and sends a message Ms,t to the
fusion center. Here we will focus on binary messages (i.e., each
sensor gets to vote on whether there is an event or not). In this

case, Ms,t = 1 means that sensor s at time t estimates that an
event happened; Ms,t = 0 means that sensor s at time t estimates
that no event happened at that time. For large networks, we want to
minimize the number of messages sent. Since the events are assumed
to be rare, we only need to send messages (that we henceforth call
picks) for Ms,t = 1; sending no message implies Ms,t = 0. Based
on the received messages, the fusion center then decides how to
respond: It produces an estimate bEt ∈ {0, 1}. If bEt = Et, it makes
the correct decision (true positive if Et = 1 or true negative if
Et = 0). If bEt = 0 when Et = 1, it missed an event and thus
produced a false negative. Similarly, if bEt = 1 when Et = 0,
it produced a false positive. False positives and false negatives
can have very different costs. In our earthquake example, a false
positive could lead to incorrect warning messages sent out to the
community and consequently lead to inappropriate execution of
remedial measures. On the other hand, false negatives could lead
to missed opportunities for protecting infrastructure and saving
lives. In general, our goal will be to minimize the frequency of
false negatives while constraining the (expected) frequency of false
positives to a tolerable level (e.g., at most one false alarm per year).

Classical Decentralized Detection. How should each sensor,
based on its measurements Xs,t, decide when to pick (send Ms,t =
1)? The traditional approach to decentralized detection assumes that
we know how likely particular observations Xs,t are, in case of an
event occurring or not occurring. Thus, it assumes we have access to
the conditional probabilities P [Xs,t | Et = 0] and P [Xs,t | Et = 1].
In this case, under the common assumptions that the sensors’ mea-
surements are independent conditional on whether there is an event
or not, it can be shown that the optimal strategy is to perform hier-
archical hypothesis testing [27]: we define two thresholds τ, τ ′, and
let Ms,t = 1 iff

P [Xs,t | Et = 1]

P [Xs,t | Et = 0]
≥ τ. (1)

i.e., if the likelihood ratio exceeds τ . Similarly, the fusion center
sets bEt = 1 iff

Bin(St; p1;N)

Bin(St; p0;N)
≥ τ ′, (2)

where St =
P

s Ms,t is the number of picks at time t; p` =
P [Ms,t = 1 | Et = `] is the sensor-level true (` = 1) and false
(` = 0) positive rate respectively; and Bin(·, p,N) is the probability
mass function of the Binomial distribution. Asymptotically opti-
mal decision performance in either a Bayesian or Neyman-Pearson
framework can be obtained by using the decision rules (1) and (2)
with proper choice of the thresholds τ and τ ′ [27].



There has also been work in quickest detection or change de-
tection (cf., [22] for an overview), where the assumption is that
there is some time point t0 at which the event occurs; Xs,t will
be distributed according to P [Xs,t | Et = 0] for all t < t0, and
according to P [Xs,t | Et = 1] for all t ≥ t0. In change detection,
the system trades off waiting (gathering more data) and improved
detection performance. However, in case of rare transient events
(such as earthquakes) that may occur repeatedly, the distributions
P [Xs,t | Et = 1] are expected to change with t for t ≥ t0.

Challenges for the Classical Approach. Detecting rare events
from community-based sensors has three main challenges:

(i) Sensors are highly heterogeneous (i.e., the distributions
P [Xs,t | Et] are different for each sensor s)

(ii) Since events are rare, we do not have sufficient data to obtain
good models for P [Xs,t | Et = 1]

(iii) Bandwidth limitations may limit the amount of communica-
tion (e.g., number of picks sent).

Challenge (i) alone would not be problematic – classical decentral-
ized detection can be extended to heterogeneous sensors, as long
as we know P [Xs,t | Et]. For the case where we do not know
P [Xs,t | Et], but we have training examples (i.e., large collections
of sensor data, annotated by whether an event is present or not),
we can use techniques from nonparametric decentralized detection
[20]. In the case of rare events, however, we may be able to col-
lect large amounts of data for P [Xs,t | Et = 0] (i.e., characterizing
the sensors in the no-event case), while still collecting extremely
little (if any) data for estimating P [Xs,t | Et = 1]. In our case, we
would need to collect data from cell phones experiencing seismic
motion of earthquakes ranging in magnitude from three to ten on
the Gutenberg-Richter scale, while resting on a table, being carried
in a pocket, backpack, etc. Furthermore, even though we can col-
lect much data for P [Xs,t | Et = 0], due to challenge (iii) we may
not be able to transmit all the data to the fusion center, but have
to estimate this distribution locally, possibly with limited memory.
We also want to choose decision rules (e.g., of the form (1)) that
minimize the number of messages sent.

3. ONLINE DECENTRALIZED ANOMALY
DETECTION

We now describe our approach to online, decentralized detection
of anomalous events.

Assumptions. In the following, we adopt the assumption of classi-
cal decentralized detection that sensor observations are conditionally
independent given Et, and independent across time (i.e., the dis-
tributions P [Xs,t | Et = 0] do not depend on t). For earthquake
detection this assumption is reasonable (since most of the noise is
explained through independent measurement noise and user activ-
ity). While spatial correlation may be present, e.g., due to mass
events such as rock concerts, it is expected to be relatively rare.
Furthermore, if context about such events is available in advance, it
can be taken into account. We defer treatment of spatial correlation
to future work. We do not assume that the sensors are homogeneous
(i.e., P [Xs,t | Et = 0] may depend on s). Our approach can be
extended in a straightforward manner if the dependence on t is peri-
odic (e.g., the background noise changes based on the time of day,
or day within week). We defer details to a long version of this paper.

Overview. The key idea behind our approach is that since sensors
obtain a massive amount of normal data, they can accurately estimate
P [Xs,t | Et = 0] purely based on their local observations. In our

earthquake monitoring example, the cell phones can collect data of
acceleration experienced under normal operation (lying on a table,
being carried in a backpack, etc.). Further, if we have hope of
detecting earthquakes, the signal Xs,t must be sufficiently different
from normal data (thus P [Xs,t | Et = 0] must be low when Et =
1). This suggests that each sensor should decide whether to pick or
not based on the likelihood L0(x) = P [x | Et = 0] only; sensor s
will pick (Ms,t = 1) iff, for its current readings Xs,t = x it holds
that

L0(x) < τs (3)

for some sensor specific threshold τs. See Figure 5(c) for an illus-
tration. Note that using this decision rule, for a pick it holds that
P [Ms,t = 1 | Et = e] = P [L0(Xs,t) < τs | Et = e] = pe. This
anomaly detection approach hinges on the following fundamental
anti-monotonicity assumption: that

L0(x) < L0(x′)⇔ P [x |Et =1]

P [x |Et =0]
>

P [x′ |Et =1]

P [x′ |Et =0]
, (4)

i.e., the less probable x is under normal data, the larger the likelihood
ratio gets in favor of the anomaly. The latter is the assumption on
which most anomaly detection approaches are implicitly based.
Under this natural anti-monotonicity assumption, the decision rules
(3) and (1) are equivalent, for an appropriate choice of thresholds.

PROPOSITION 1. Suppose Condition (4) holds. Then for any
threshold τ for rule (1), there exists a threshold τs such that rule (3)
makes identical decisions.

Since the sensors do not know the true distribution P [Xs,t |Et =0],
they use an online density estimate bP [Xs,t | Et = 0] based on col-
lected data. The fusion center will then perform hypothesis testing
based on the received picks Ms,t. In order for this approach to
succeed we have to specify:

(i) How can the sensors estimate the distribution bP [Xs,t | Et = 0]
in an online manner, while using limited resources (CPU, bat-
tery, memory, I/O)?

(ii) How should the sensors choose the thresholds τs?
(iii) Which true positive and false positive rates p1, p0 and thresh-

old τ ′, cf., (2), should the fusion center use?

We now discuss how our approach addresses these questions.

Online Density Estimation. For each sensor s, we have to, over
time, estimate the distribution of normal observations bL0(Xs,t) =bP [Xs,t | Et = 0], as well as the activation threshold τs. There
are various techniques for online density estimation. Parametric
approaches assume that the density P [Xs,t | Et = 0] is in some
parametric family of distributions:

P [Xs,t | Et = 0] = φ(Xs,t, θ).

The goal then is to update the parameters θ as more data is obtained.
In particular, mixture distributions, such as mixtures of Gaussians,
are a flexible parametric family for density estimation. If access to a
batch of training data is available, algorithms such as Expectation
Maximization can be used to obtain parameters that maximize the
likelihood of the data. However, due to memory limitations, it is
rarely possible to keep all data in memory; furthermore, model train-
ing would grow in complexity as more data is collected. Fortunately,
several effective techniques have been proposed for incremental
optimization of the parameters, based on Variational Bayesian tech-
niques [24] and particle filtering [8]. Online nonparametric density
estimators (whose complexity, such as the number of mixture com-
ponents, can increase with the amount of observed data) have also



been developed [10]. In this paper, we use Gaussian mixture models
for density estimation.

Online Threshold Estimation. Online density estimators as intro-
duced above allow us to estimate bP [Xs,t | Et = 0]. The remaining
question is how the sensor-specific thresholds τs should be chosen.
The key idea is the following. Suppose we would like to control
the per-sensor false positive rate p0 (as needed to perform hypoth-
esis testing in the fusion center). Since the event is assumed to be
extremely rare, with very high probability (close to 1) every pick
Ms,t = 1 will be a false alarm. Thus, we would like to choose our
threshold τs such that, if we obtain a measurement Xs,t = x at
random, with probability 1− p0, it holds that bL0(x) ≥ τs.

This insight suggests a natural approach to choosing τs: For
each training example xs,t, we calculate its likelihood bL0(xs,t) =bP [xs,t | Et = 0]. We then choose τs to be the p0-th percentile
of the data set L = {bL0(xs,1), . . . , bL0(xs,t)}. As we gather an
increasing amount of data, as long as we use a consistent density
estimator, this procedure will converge to the correct decision rule.

In practice, due to memory and computation constraints, we can-
not keep the entire data set L of likelihoods and reestimate τs at
every time step. Unfortunately, percentiles do not have sufficient
statistics as the mean and other moments do. Moreover, Munro
and Paterson [19] show that computing rank queries exactly re-
quires Ω(n) space. Fortunately, several space-efficient online ε-
approximation algorithms for rank queries have been developed. An
algorithm that selects an element of rank r′ from N elements for a
query rank r is said to be uniform ε-approximate if

|r′ − r|
N

≤ ε

One such algorithm which requires logarithmic space is given by
[11]. We do not present details here due to space limitations. We
summarize our analysis in the following proposition:

PROPOSITION 2. Suppose that we use a uniformly consistent
density estimator (i.e., lim supx{bP [x | Et = 0]−P [x | Et = 0]} →
0 a.s.). Further suppose that τs,t is an ε-accurate threshold obtained
through percentile estimation for p0. Then for any ε > 0, there
exists a time t0 such that for all t ≥ t0, it holds that the false positive
probability bp0 = P

hbL0(xs,t) < τs

i
is |bp0 − p0| ≤ 2ε.

The proof of Proposition 2, which we omit for space limitations,
hinges on the fact that if the estimate bL0(x) converges uniformly
to L0(x), the p0-th percentiles (for 0 < p0 < 1) converge as well.
Furthermore, the use of an ε-approximate percentile can change the
false positive rate by at most ε.

Uniform convergence rates for density estimation have been estab-
lished as well [9], allowing us to quantify the time required until the
system operates at ε-accurate false positive rates. Since we assume
that communication is expensive, we may impose an upper bound
on the expected number of messages sent by each sensor. This can
be achieved by imposing an upper bound p̄ on p0, again relying on
the fact that events are extremely rare. We present more details in
the next section.

Hypothesis Testing for Sensor Fusion. Above, we discussed how
we can obtain local decision rules that allow us to control the sensor-
level false positive rate p0 in a principled manner, and in the fol-
lowing we assume that the sensors operate at this false positive rate.
However, in order to perform hypothesis testing as in (2), it appears
that we also need an estimate of the sensor-level true-positive rate p1.

Suppose that we would like to maximize the detection rate PD

at the fusion center while guaranteeing a false positive rate PF that

Data: Estimated sensor ROC curve, N sensors, communication
constraints p̄, bound on fusion-level false positives P̄

Result: sensor operating point (p0, p1)
for ith operating point (pi

0, p
i
1) s.t. pi

0 ≤ p̄ do1
//Do Neyman-Pearson hypothesis testing to evaluate pi

02

Compute N(pi
0) = min{N ′ :

P
S>N′ Bin(S; pi

0;N)≤ P̄}3

Compute P i
D =

P
S>N(pi

0) Bin(S; pi
1;N)4

Compute P i
F =

P
S>N(pi

0) Bin(S; pi
0;N)5

Choose ` = arg maxi P
i
D and set (p0, p1) = (p`

0, p
`
1)6

Figure 2: Threshold Optimization procedure

is bounded by P̄ . It can be shown that the optimal decision rule (2)
is equivalent to setting bEt = 1 iff St ≥ N(p0), for some number
N(p0) that only depends on the total number N of sensors, and the
sensor false-positive rate p0. Thus, to control the fusion-level false
positive rate PF we, perhaps surprisingly, do not need to know the
value for p1, since PF does not depend on p1:

PF =
X

S>N(p0)

Bin(S; p0;N) and PD =
X

S>N(p0)

Bin(S; p1;N).

Thus, our online anomaly detection approach leads to decision rules
that provide guarantees about the fusion-level false positive rate.

Our goal is not just to bound the false positive rate, but also to
maximize detection performance. The detection performance PD

above depends on the sensor-level true positive rate p1. If we have
an accurate estimate of p1, all sensors are homogeneous and the
anti-monotonicity condition (4) holds, the following result, which is
a consequence of [27], holds:

THEOREM 3. Suppose condition (4) holds and the sensors are
all homogeneous (i.e., P [Xs,t | Et] is independent of s). Further
suppose that for each sensor-level false-positive rate p0 we know
its true-positive rate p1. Then one can choose an operating point
(p∗0, p

∗
1) that is asymptotically optimal (as N →∞).

Unfortunately, without access to training data for actual events
(e.g., sensor recordings during many large earthquakes), we cannot
obtain an accurate estimate for p1. However, in Section 5, we show
how we can obtain an empirical estimate bp1 of p1 by performing
shaketable experiments. Suppose now that we have an estimate bp1

of p1. How does the detection performance degrade with the accu-
racy of bp1? Suppose we have access to an estimate of the sensors’
Receiver Operator Characteristic (ROC) curve, i.e., the dependency
of the achievable true positive rates bp1(p0) as a function of the
false positive rate (see Figure 7(a) for an example). Now we can
view both the estimated rates bPD ≡ bPD(bp1(p0)) ≡ bPD(p0) andbPF = bPF (p0) as functions of the sensor-level false positive rate p0.
Based on the argument above, we have that bPF (p0) = PF (p0), i.e.,
the estimated false positive rate is exact, but in general bPD(p0) 6=
PD(p0). Fortunately, it can be shown that if the estimated ROC
curve is conservative (i.e., bp1(p0) ≤ p1(p0) for all rates p0), then
it holds that bPD(p0) ≤ PD(p0) is an underestimate of the true
detection probability. Thus, if we are able to obtain a pessimistic
estimate of the sensors’ ROC curves, we can make guarantees about
the performance of the decentralized anomaly detection system. We
can now choose the optimal operating point by

max
p0≤p̄

bPD(p0) s.t. bPF (p0) ≤ P̄ ,

and are guaranteed that the optimal value of this program is a pes-



simistic estimate of the true detection performance, while bPF is in
fact the exact false alarm rate. Algorithm 2 formalizes this procedure.
We summarize our analysis in the following theorem:

THEOREM 4. If we use decentralized anomaly detection to con-
trol the sensor false positive rate p0, and if we use a conservative
estimated ROC curve (p0, bp1), then Algorithm 2 chooses an oper-
ating point p0 to maximize a lower bound on the true detection
performance, i.e., bPD(p0) ≤ PD(p0).

4. THE COMMUNITY SEISMIC NETWORK

PickRegistration Heartbeat

Datastore

Client  Interaction

Associator

Early Warning Alerts

Google
App Engine

Memcache

Figure 3: Overview of the CSN system.

We are building a Community Seismic Network (CSN) to: (a) pro-
vide warning about impending shaking from earthquakes, (b) guide
first responders to areas with the greatest damage after an earthquake
(c) obtain fine-granularity maps of subterranean structures in areas
where geological events such as earthquakes or landslides occur, and
(d) provide detailed analysis of deformations of internal structures
of buildings (that may not be visible to inspectors) after geological
events. The CSN is a challenging case study of community sense
and response systems because the community has to be involved to
obtain the sensor density required to meet these goals, the benefits of
early warning of shaking are substantial, and frequent false warnings
result in alerts being ignored.

The technical innovations of the CSN include the use of widely
heterogeneous sensors managed by a cloud computing platform that
also executes data fusion algorithms and sends alerts. Heterogeneous
sensors include cell phones, stand-alone sensors that communicate
to the cloud computing system in different ways, and accelerometers
connected through USB to host computers which are then connected
to the cloud through the Internet. Figure 3 presents an overview
of the CSN. An advantage of the cloud computing system is that
sensors anywhere in the world with Internet access including areas
such as India, China, and South America can connect to the system
easily merely by specifying a URL.

4.1 Community Sensors: Android and USB
Accelerometers

The Community Seismic Network currently uses two types of
sensors: 16-bit MEMS accelerometers manufactured by Phidgets,
Inc., used as USB-accessories to laptops and desktop computers (see

Figure 1(c)), as well as accelerometers in Google Android smart-
phones (see Figure 1(b)) – other types of phones will be included
in the future. Each of the sensors has unique advantages. The USB
sensors provide higher fidelity measurements. By firmly affixing
them to a non-carpeted floor (preferably) or a wall, background
noise can be drastically removed. However, their deployment relies
on the community purchasing a separate piece of hardware (cur-
rently costing roughly USD 150 including custom housing). In
contrast, the Google Android platform has a large market share,
currently approximately 16.3% and is projected to grow further [3].
Android based smartphones typically contain 3-axis accelerometers,
and integration of an Android phone into the CSN only requires
downloading a free application. On the other hand, the built-in
accelerometers are of lower quality (our experiments showed a typi-
cal resolution of approximately 13 bits), and phones are naturally
exposed to frequent acceleration during normal operation. We have
also built early prototypes of stand-alone devices on top of Arduino
boards that connect through USB or WiFi to computing systems
with access to the cloud.

Are inexpensive accelerometers sensitive enough to detect seis-
mic motion? We performed experiments to assess the fidelity of the
Phidgets and a variety of Android phones (the HTC Dream, HTC
Hero and Motorola Droid). We placed the sensors on a stationary
surface and recorded for an hour. We found that when resting, the
phones experienced noise with standard deviation ≈ 0.08 m/s2,
while the Phidgets experienced noise with standard deviation of
≈ 0.003 m/s2. Earthquakes with magnitude 4 on the Gutenberg-
Richter scale achieve an acceleration of approximately 0.12 m/s2

close to the epicenter, which can be detected with the Phidgets, but
barely exceeds the background noise level of the phones. However,
earthquakes of magnitude 5 achieve acceleration of 0.5 m/s2, in-
creasing to roughly 1.5 m/s2 for magnitude 6 events. These phones
sample their accelerometers at between 50Hz and 100Hz, which is
comparable to many high fidelity seismic senors. These numbers
suggest that cell phone accelerometers should be sensitive enough
to be able to detect large earthquakes.

So far, the CSN is a research prototype, and sensors have been
deployed and are operated by the members of our research group.
We anticipate opening the system to a larger community in the near
future. The research reported in this paper presents a feasibility
study that we performed in order to justify the deployment of the
system. Figure 4(a) presents the locations where messages have
been reported from in our network.

4.2 Android Client
Figure 4(b) presents an overview of our Android client application.

It consists of several components, which we explain in the following.
The client for the Phidget sensors follows a similar implementation.

A central policy decision of the system was that the only manner
in which information is exchanged between a client computer and
the cloud computing system is for the client to send a message to
the cloud and await a reply: in effect to execute a remote procedure
call. All information exchanges are initiated by a client, never by
the cloud. This helps ensure that participants in the CSN are only
sent information at points of their choosing.

Registration. Upon the first startup, the application registers
with the Cloud Fusion Center (CFC). The CFC responds with a
unique identifier for the client, which will be used in all subsequent
communications with the CFC.

Picking Algorithm. A background process runs continuously,
collecting data from the sensor. The picking algorithm generates
"pick" messages by analyzing raw accelerometer data to determine
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Figure 4: (a) Map of locations where measurements have been reported from during our pilot deployment of CSN. (b) Architecture
of the phone client software. (c) Experimental setup for playing back historic earthquakes on a shaketable, and testing their effect
on the sensors of the CSN system.

if the data in the recent past is anomalous. The algorithm executes
in the background without a user being aware of its existence. It
implements the approach discussed in Section 3.

For density estimation, we use a Gaussian mixture model for
P [Xs,t | E]. The most important design choice is the representa-
tion Xs,t of the sensor data. Our approach is to compute various
features from short time windows (similar to phonemes in speech
recognition). The idea is that normal acceleration, e.g., due to
walking, or manual phone operation, lead to similar signatures of
features.

A first challenge is that phones frequently change their orientation.
Since accelerometers measure gravity, we first determine (using a
decaying average) and subtract out the gravity component from the
[X,Y, Z]-components of the signal. We then rotate the centered
signal so that the estimated gravity component points in the negative
Z direction [0, 0,−1]. Figures 5(a) and 5(b) illustrate this process.
Since we cannot consistently orient the other axes, we use features
that are invariant under rotation around the vertical (Z) axis, by
replacing the [X,Y ] component by its Euclidean norm ||[X,Y ]||2.

We consider time windows of 2.5 seconds length and, for both the
Z and ||[X,Y ]||2 components calculate 16 Fourier coefficients, the
second moment, and the maximum absolute acceleration. This pro-
cedure results in a 36-dimensional feature vector. To avoid the curse
of dimensionality we perform linear dimensionality reduction by
projection on the top 16 components. These principal components
can be computed using online algorithms [30]. While PCA captures
most variance in the training data (normal acceleration patterns), it
is expected that unusual events may carry energy in directions not
spanned by the principal components. We therefore add the projec-
tion error (amount of variance not captured by the projection) as an
additional feature. We arrived at this choice of features, as well as
the number k = 6 of mixture components through cross-validation
experiments, using our experimental setup discussed in Section 5.

Our threshold for picking is obtained using online percentile
estimation, as detailed in Section 3. In order to bootstrap the deploy-
ment of Gaussian mixture models to new phones, our phone client
has the capability of updating its statistical model via messages from
the CFC. The threshold by which the algorithm on a client computer
determines whether an anomaly is present can also be changed by a
message from the cloud computer. This allows the CFC to throttle
the rate at which a given sensor generates pick messages.

Pick Reporting. Whenever the picking algorithm declares a pick,
a message is sent to the CFC, which includes the time, location, and
estimated amplitude of the data which triggered the pick. Including
the location is important for two reasons. First, for mobile clients,

it is more efficient than receiving regular location updates. Second,
sending the location is helpful in order to facilitate faster association
by avoiding database lookups for every stationary sensor pick. While
it should be possible to improve detection performance at the CFC
by sending more information or additional rounds of messages, it is
unclear if the cost of this communication is acceptable. Electricity
and the Internet may be lost shortly after a large quake, and so
our system is designed to use minimal messages to report crucial
information as quickly as possible.

Heartbeats. At some prespecified interval, “heartbeat” messages
are sent to the CFC, allowing the CFC to keep track of which phones
are currently running the program. The heartbeats contain the time,
location, waveform logs, and a parameter version number. Using the
parameter version number, the CFC can determine whether to send
updated parameters to each phone or not. This mechanism allows
modifications to the picking algorithm without requiring changes to
the underlying client software.

User interface. While the main application runs in the background
using Android’s multitasking capability, the application provides a
user interface to display the recorded waveforms. We are currently
collaborating with a USGS led effort in earthquake early warning.
Our application will connect to the early warning system and be
able to issue warnings about when shaking will occur, as well as
the estimated epicenter of the event (see Figure 1(b)). While the
application is currently a research prototype and not yet deployed
in public use, we anticipate that the capability of real-time early
warning may convince users to download and install the application.

Power Usage. Battery drain is an important factor in users’ de-
cisions to install and run our application. In our experiments on
the Motorola Droid, the battery life exceeded 25 hours while con-
tinuously running the client (but without any further operation of
the phone). This running time would not inconvenience a user
who charges their phone each night. However, we are planning to
perform further power optimizations and possibly implement duty
cycling prior to public release of the client.

4.3 Cloud Fusion Center
The Cloud Fusion Center (CFC) performs the fusion-level hypoth-

esis test defined in (2) and administers the network. In devising a
system to serve as a logically central location, we evaluated building
our own server network, using virtualized remote servers, having
collocated servers, and building our application to work on Google
App Engine. App Engine was chosen as the platform for the CFC
for several reasons: easy scalability, built in data security, and ease



(a) Before gravity correction (b) After gravity correction (c) GMM based picking

Figure 5: (a) 5 hours of recording three-axis accelerometer data during normal cell phone use. (b) Data from (a) after removing
gravity and appropriate signal rotation. (c) Illustration of the density estimation based picking algorithm. The red plane shows an
operating threshold. Acceleration patterns for which the density does not exceed the threshold result in a pick.

of maintenance.
The App Engine platform is designed from the ground up to be

scalable to an arbitrary number of clients. As we expect to grow
our sensor network to a very high sensor density, this element of the
platform’s design is very important. What makes the scalability of
the platform easily accessible is the fact that incoming requests are
automatically load-balanced between instances that are created and
destroyed based on current demand levels. This reduces algorithmic
complexity, as the load balancing of the network is handled by the
platform rather than by code written for our CSN system.

A second consideration in our selection was data security. With
the other solutions we had available to us, if the data we collected
was stored on the server network we were using, then, without re-
dundant servers in separate geographies, we risked losing all of
our data to the very earthquakes we hoped to record. App Engine
solves this problem for us by automatically replicating datastore
writes to geographically separate data centers as the writes are pro-
cessed. This achieves the level of data redundancy and geographical
separation we require, without forcing us to update our algorithms.
Other network storage solutions would have been possible as well,
but having it built into the platform meant that latency for code
accessing the storage would be lower.

A final compelling reason to select the App Engine was its ease
of maintenance. Rather than spending time building server images
and designing them to coordinate with each other, we were able
to immediately begin working on the algorithms that were most
important to us. Server maintenance, security, and monitoring are
all handled by the App Engine and do not take away from the time
of the research team members.

App Engine also includes a number of other benefits we con-
sidered. First, it utilizes the same front ends that drive Google’s
search platform, and, consequently, greatly reduces latency to the
platform from any point in the world. Since we plan to expand this
project beyond Southern California, this is very useful. Second,
the platform supports live updates to running applications. Rather
than devising server shutdown, update, and restart mechanisms as
is commonly required, we can simply redeploy the application that
serves our sensors and all new requests to the CFC will see the new
code instead of the old code with no loss of availability.

All of these features do not come without a price, however. We
will discuss what we perceive as the two largest drawbacks of the
platform: loading requests and design implications.

Loading Requests. Because App Engine dynamically scales the
number of available instances available to serve a given applica-
tion as the volume of requests per unit time changes, it creates a

phenomenon known as a loading request. This request is named in
this manner because it is the first request to a new instance of the
application. That is, when App Engine allocates a new instance to
serve increasing traffic demands, it sends an initial live request to
that instance. In Java, this results in the initialization of the Java
Virtual Machine, including loading all of the appropriate libraries.

Over the last three months, we experienced loading requests with
a median frequency of 9.52% of all requests. While this means
that 90.48% of requests did not experience increased latency as a
result of the platform, the remaining requests experienced a median
increased processing duration of 5,400 ms. Because of the extreme
penalty paid by loading requests, when examining average request
duration, their presence dominates the figures. This results in an
unusual property of App Engine, which is that the system performs
much better at higher constant request loads.

Fig. 6(a), shows that, as the request volume increases, the average
duration of each request decreases. This is a result of a reduced
impact of loading requests. This data leads to the conclusion that
if we avoid potential bottleneck points such as datastore writes, we
can expect cloud performance to stay the same or get better for any
increased future load imposed on the system (e.g., as the number of
sensors scales up).

Design Implications. When designing an algorithm to run on App
Engine, the algorithm has to fit inside of the constraints imposed
by the architecture. There are a few factors to consider. First, as a
result of the automatic scaling done by App Engine, every request to
the system exists in isolation. That is, the running requests maintain
no shared state, nor do they have any inter-process communication
channels. Additionally, since there are no long running background
processes, maintaining any form of state generated as a result of
successive calls is more difficult. In order to accurately ascertain the
number of incoming picks in a unit time over a specified geography,
we had to surmount these hurdles.

The only common read/write data sources provided are memcache
(a fast key value store) and datastore. The datastore is a persistent
object store used for permanent data archiving for future analysis or
retrieval. Long term state which changes infrequently, such as the
number of active sensors in a given region, is stored and updated in
the datastore, but cached in the memcache for quick access. Due
to its slower performance, particularly in aggregating writes for
immediate retrieval by other processes, it is unsuitable for short
term state aggregation.

Short term state, such as the number of picks arriving in an
interval of time in a particular region, is stored in memcache. While
memcache is not persistent, as objects can be ejected from the cache
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Figure 6: (a) Average duration of a pick request as a function of system load. (b) Model of dispersed sensors using a hash to a uniform
grid to establish proximity. (c) A picture of the CSN android client in debug mode, capturing picks.

due to memory constraints, operations that utilize the memcache are
much faster. Memcache is ideal for computations that need to occur
quickly, and, because memcache allows values to set an expiry time,
it is also perfect for data whose usefulness expires after a period of
time. That is, after a long enough period of time has passed since a
pick arrived, it can no longer be used in detecting an event; therefore,
its contributed value to the memcache can be safely expired.

Memcache operates as a key value store, effectively a distributed
hash table. In order to determine how many sensors sent picks in
a given period of time, we devised a system of keys which could
be predictably queried to ascertain the number of reporting sensors.
We used a geography hashing scheme to ascribe an integer value
to every latitude/longitude pair, which generates a uniform grid of
cells whose size we can control, with each sensor fitting into one
cell in the grid (see Fig. 6(b)). Incoming picks then update the key
corresponding to a string representation of the geographical hash
and a time bucket derived by rounding the arrival time of the pick to
the nearest second.

In this manner, independent processes aggregate their state, and
each process runs the hypothesis testing algorithm of Section 3 in
the cell whose state it updated to determine the value of bEt. IfbEt = 0, then no action needs to be taken. If bEt = 1 a task queue
task is launched to initiate the alert process; the task is named using
the hash values that generated the alert. Each named task creates a
’tombstone’ (a marker in the system) on execution which prevents
additional tasks with the same name from being created, so even if
successive picks also arrive at the bEt = 1 conclusion, we know that
only one alert will be sent out for a given set of inputs.

5. EXPERIMENTS
Could a network of cheap community sensors detect the next

large earthquake? We obtain accurate estimates of the distribution
of normal sensor data by collecting records from volunteers’ phones
and and USB accelerometers. Using an earthquake shaketable and
records of ground acceleration gathered by the Southern California
Seismic Network (SCSN) during moderately large earthquakes, we
obtain estimates of each sensor’s ROC curves. These estimates of
sensor performance allow us to evaluate the effect of network density
and composition on the detection rate. Finally, we apply the learned
detection models to data from the 2010 Baja California M7.2 quake.

Data Sets. While earthquakes are rare, data gathered from com-
munity sensors can be plentiful. To characterize “normal” (back-
ground) data, seven volunteers from our research group carried
Android phones throughout their daily routines to gather over 7GB
of phone accelerometer data. Similarly, an initial deployment of 20
USB accelerometers recorded 55GB of acceleration over a period
of 4 months. However, due to the infrequent occurrence of large
earthquakes, it could require many years of observation to obtain

records from several dangerously large events. One approach to
overcome this limitation is to simulate sensor observations from
existing seismic records, and use these simulated observations for
testing. The Southern California Seismic Network, a network of
several hundred high-fidelity seismometers, provides a database of
such records. We extract a set of 32 records of moderately large
(M5-5.5) events from stations at distances of under 40 km from the
event epicenter. Simulated sensor observations are produced by sub-
sampling these records to 50 samples per second and superimposing
them onto segments of Android or Phidget data. As we will see
in our shaketable experiments, this method of obtaining simulated
sensor data yields a reasonable estimate of detection performance
when we reproduce quake records using a shaketable and directly
sense the acceleration with both Androids and Phidgets.

Picking Algorithm Evaluation. In our first experiment, we eval-
uate the sensor-level effectiveness of our density-based anomaly
detector. We compare four approaches: two baselines and two
versions of our algorithm.

1. A hypothesis-testing based approach (as used by classical de-
centralized detection), which uses a GMM-based density esti-
mate both for P [Xs,t | Et = 0], as well as P [Xs,t | Et = 1].
For training data, we use 80 historic earthquake examples of
magnitude M4.5-5, superimposed on the sensor data.

2. A domain specific baseline algorithm, STA/LTA, which ex-
ploits the fact that the energy in earthquakes is broadband in
0-10Hz. It compares the energy in those frequencies in the
last 2.5s to the energy at those frequencies in the previous 5s;
a sharp rise in this ratio is interpreted as a quake.

3. A simplified GMM based approach, which uses features from
a sliding window of 2.5s length

4. Our full GMM approach, which combines combines features
of the last 2.5s with features from the previous 5s (to better
detect the onset of transient events).

Notice that implementing the hypothesis testing baseline in an actual
system would require waiting until the sensors experienced such a
number of earthquakes, carefully annotating the data, and then train-
ing a density estimator. On the other hand, our anomaly detection
approach can be used as soon as the sensors have gathered enough
data for an estimate of P [Xs,t | Et = 0]. We applied each of these
four algorithms to test data created by superimposing historic earth-
quake recordings of magnitude M5-5.5 on phone and Phidget data
that was not used for training. The resulting estimated sensor ROC
curves are shown in Fig. 7(a) and Fig. 7(b), respectively.

First note that in general the performance for the Phidgets is much
better than for the phones. This is expected, as phones are subject to
much more background noise, and the quality of the accelerometers
in the Phidgets is better than those in the phones. For example,
while the STA/LTA baseline provides good performance for the



(a) Android detection performance (b) Phidget detection performance (c) Detection rates

(d) 1 pick per minute, LtSt features (e) 1 pick per minute, alternate view (f) Detection rate on Baja M7.2 (100 itera-
tions averaged)

Figure 7: In all plots, the system-level false positive rate is constrained to 1 per year and the achievable detection performance is
shown. (a,b) Sensor level ROC curves on magnitude M5-5.5 events, for Android (a) and Phidget (b) sensors. (c) Detection rate as a
function of the number of sensors in a 20 km × 20 km cell. We show the achievable performance guaranteeing one false positive per
year, while varying the number of cells covered. (d,e) Detection performance for one cell, depending on the number of phones and
Phidgets. (f) Actual detection performance for the Baja event. Note that our approach outperforms classical hypothesis testing, and
closely matches the predicted performance.

Phidgets (achieving up to 90% detection performance with minimal
false positives), it performs extremely poorly for the phone client
(where it barely outperforms random guessing). The other tech-
niques achieve close to 100% true positive rate even for very small
false positive rates. For the phone data, both our anomaly detection
approaches outperform the hypothesis testing baseline, even though
they use less training data (no data about historic earthquakes). In
particular for low false positive rates (less than 5%), the full GMM
LtSt model outperforms the simpler model (that only considers 2.5s
sliding windows). Overall, we find that both for the phones and the
Phidgets, we can achieve detection performance far better than ran-
dom guessing, even for very small false positive rates, and even for
lower magnitude (M5-5.5) events. We expect even better detection
performance for stronger events.

Sensor Fusion. Based on the estimated sensor-level ROC curves,
we can now estimate the fusion-level detection performance. To
avoid overestimating the detection performance, we reduce the esti-
mated true positive rates, assuming that a certain fraction of the time
(10% in our case) the sensors produce pure random noise. We now
need to specify communication constraints p̄ on how frequently a
message can be sent from each sensor, as well as a bound P̄ on the
fusion-level false positive rate. We choose p̄ to be at most one mes-
sage per minute, and P̄ to be at most one fusion-level false positive
per year. This fusion-level false positive rate was chosen as repre-
sentative of the time scale the CSN must operate on; in practice this
would depend on the cost of taking unnecessary response measures.

We consider sensors located in geospatial areas of size 20 km ×
20 km, called cells. The choice of this area is such that, due to the
speed of seismic waves (≈ 5-10 km/s), most sensors within one cell

would likely detect the earthquake when computing features based
on a sliding window of length 2.5s. However, in order to achieve
larger spatial coverage we will need many spatial cells of 20 km ×
20 km. For example, roughly 200 such cells would be needed to
cover the Greater Los Angeles area. Increasing the number of cells
additively increases the number of false positives due to the fact
that multiple hypotheses (one per cell) are tested simultaneously.
Consequently, to maintain our objective of one system-wide false
positive per year, we must decrease the rate of annual false positives
per cell. The effect on detection rates from this compensation as a
function of the total number of cells is shown in Figure 7(c). Notice
that even for 200 cells, approximately 60 phones per cell suffice to
achieve close to 100% detection performance, as long as they are
located close to the epicenter.

Sensor Type Tradeoffs. A natural question is what is the tradeoff
between the different sensor types? Figures 7(d) and 7(e) shows
the estimated detection performance as a function of the number
of Phidgets and number of phones in the area, when constrained to
one false alarm per year. Our results indicate that approximately 50
phones or 10 Phidgets should be enough to detect a magnitude 5
and above event with close to 100% success.

The results in Figures 7(d) and 7(e) also allow us to estimate how
we could ensure sufficient detection performance if a given area
contains only a limited number of active phone clients. For example,
if only 25 phones are active in a cell, we could manually deploy 5
additional Phidgets to boost the detection performance from close
to 70% to almost 100%.

Notice that all these results assume that the sensors are located
close to the epicenter (as they assume the sensors experience max-
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Figure 8: Shake table comparison of 24-bit EpiSensor, Android, and Android in a backpack. Notice that the phone recordings closely
match those of the affixed high-fidelity EpiSensor.

imum acceleration), and are thus to be taken with some care. Cov-
ering an area such as Greater Los Angeles likely requires tens of
thousands of sensors.

Shaketable Validation. Our previous experiments have used syn-
thetically produced data (recorded seismic events superimposed on
phone recordings) to simulate how different detection algorithms
may respond to a moderately large earthquake. Is such a simulation-
based approach valid? Would these sensors actually detect an earth-
quake from their own recordings? To answer these questions, we
take recordings of three large historical earthquakes, and play them
back on a shaketable (see Figure 4(c) for an illustration).

First, we test the ability of Android phones to accurately capture
seismic events, relative to one of the sensors used in the SCSN. We
reproduce records of three large M6-8 earthquakes on the shaketable,
and record the motion using one Android placed on the table, and
another in a backpack on the table. Ground truth acceleration is
provided by a 24-bit EpiSensor accelerometer mounted to the table.
A sample record from each sensor is shown in Figure 8. Unlike
the EpiSensor, the phones are not affixed and are free to slide. The
backpack also introduces an unpredictable source of error. Despite
these significant challenges, after properly resampling both signals
and aligning them temporally, we obtain an average correlation
coefficient of 0.745, with a standard deviation of 0.0168. This result
suggests that the phones reproduce the waveforms rather faithfully.

A more important question than faithful reproduction of wave-
forms is whether the sensors can detect an earthquake played back
on the shaketable. To assess this, we use the model trained on back-
ground noise data, as described above. We further use percentile es-
timation to choose the operating point which we experimentally de-
termined to lead to high system-level detection performance above.
All six of the recordings (three from the phone on the table and three
from the phone in the backpack) were successfully detected.

The Previous Big One. To perform an end-to-end test of the
entire system, we performed an experiment with the goal to find
out whether our CSN would have been able to detect the last big
event. A recent major earthquake in Southern California occurred
on April 4, 2010. This M7.2 quake in Baja, California was recorded
by SCSN, although the nearest station was more than 60 km from
the event epicenter. Using 8 recordings of this event, at distances of
63 km to 162 km, we produce simulated Android data and evaluate
how many phones would have been needed to detect this event.
Specifically, we constrain the system as before to one false alarm
per year, and one message per minute in order to determine detec-
tion thresholds, sensor operating points and sensor thresholds for
both the GMM anomaly and hypothesis testing detector, for each
deployment size. We then simulate observations for each sensor in
a deployment ranging from 1 sensor to 100 sensors. The models

and thresholds are then applied to these observations to produce
picks; the fusion center hypothesis test is then performed and the
decision is made whether an event has occurred or not. The average
detection rates for each deployment size (averaged over 100 itera-
tions, using different Android data to simulate each observation) are
shown in Figure 7(f) along with the estimated detection rates for
the GMM-based anomaly detection. The latter estimate is based on
the ROC that we estimated using a different collection of seismic
events, as explained in our Picking Algorithm Evaluation section.
Notice that the actual detection performance matches well the pre-
dicted detection performance. As baseline, we compare against the
hypothesis testing based baseline (trained on 80 smaller-magnitude
earthquakes). Anomaly detection significantly outperforms hypoth-
esis testing, and suggests that a deployment of 60 phones in a cell
60 km from the epicenter would have been quite likely to detect the
Baja, California M7.2 event.

6. RELATED WORK
In the following, we review prior work that is related to various

aspects of this paper and that has not been discussed yet.

Distributed and Decentralized Detection. There has been a great
deal of work in decentralized detection. The classical hierarchical
hypothesis testing approach has been analyzed by Tsitsiklis [27].
Chamberland et al. [2] study classical hierarchical hypothesis test-
ing under bandwidth constraints. Their goal is to minimizes the
probability of error, under constraint on total network bandwidth
(similar to our constraint p̄ on the number of messages sent per sen-
sor). Both these approaches require models for P [Xs,t | Et = 1],
which are not available in our case. Wittenburg et al. [31] study
distributed event detection in WSN. In contrast to the work above,
their approach is distributed rather than decentralized: nearby nodes
collaborate by exchanging feature vectors with neighbors before
making decision. Their approach requires a training phase, provid-
ing examples of events that should be detected. Martinic et al. [16]
also study distributed detection on multi-hop networks. Nodes are
clustered into cells, and the observations within a cell are compared
against a user-supplied “event signature” (a general query on the
cell’s values) at the cell’s leader node (cluster head). The communi-
cation requirements of the last two approaches are difficult to meet
in community sensing applications, since sensors may not be able to
communicate with their neighbors due to privacy and security restric-
tions. Both approaches require prior models (training data providing
examples of events that should be detected, or appropriately formed
queries) that may not be available in the seismic monitoring domain.

Anomaly Detection. There has also been significant amount of
prior work on anomaly detection. Yamanishi et al. [32] develop the
SmartSifter approach that uses Gaussian or kernel mixture models
to efficiently learn anomaly detection models in an online manner.



While results apply only in the centralized setting, they support the
idea of using GMMs for anomaly detection could be extended to
learn, for each phone, a GMM that adapts to non-stationary sources
of data. Davy et al. [7] develop an online approach for anomaly
detection using online Support Vector machines. One of their ex-
periments is to detect anomalies in accelerometer recordings of
industrial equipment. They use produce frequency-based (spec-
trogram) features, similar to the features we use. However, their
approach assumes the centralized setting.

Subramaniam et al. [25] develop an approach for online out-
lier detection in hierarchical sensor network topologies. Sensors
learn models of their observations in an online way using kernel
density estimators, and these models are folded together up the hi-
erarchy to characterize the distribution of all sensors in the network.
Rajasegarar et al. [23] study distributed anomaly detection using
one-class SVMs in wireless sensor networks. They assume a tree
topology. Each sensor clusters its (recent) data, and reports the clus-
ter descriptions to its parent. Clusters are merged, and propagated
towards the root. The root then decides if the aggregate clusters are
anomalous. Both approaches above are not suitable for the com-
munity sensing communication model, where each sensor has to
make independent decisions. Zhang et al. [33] demonstrate online
SVMs to detect anomalies in process system calls in the context of
intrusion detection. Onat et al. [21] develop a system for detecting
anomalies based on sliding window statistics in mobile ad hoc net-
works (MANETs). However, their approach requires for nodes to
share observations with their neighbors.

Seismic Networks. Perhaps the most closely related system is
the QuakeCatcher network [4]. While QuakeCatcher shares the use
of MEMS accelerometers in USB devices and laptops, our system
differs in its use of algorithms designed to execute efficiently on
cloud computing systems and statistical algorithms for detecting
rare events, particularly with heterogeneous sensors including mo-
bile phones (which create far more complex statistical challenges).
Kapoor et al. [14] analyze the increase in call volume after or
during an event to detect earthquakes. Another related effort is
the NetQuakes project [28], which deploys expensive stand-alone
seismographs with the help of community participation. Our CSN
Phidget sensors achieve different tradeoffs between cost and ac-
curacy. Several Earthquake Early Warning (EEW) systems have
been developed to process data from existing sparse networks of
high-fidelity seismic sensors (such as the SCSN). The Virtual Seis-
mologist [6] applies a Bayesian approach to EEW, using prior infor-
mation and seismic models to estimate the magnitude and location
of an earthquake as sources of information arrive. ElarmS [1] uses
the frequency content of initial P-wave measurements from sensors
closest to the epicenter, and applies an attenuation function to esti-
mate ground acceleration at further locations. We view our approach
of community seismic networking as fully complementary to these
efforts by providing a higher density of sensors and greater chance
of measurements near to the epicenter. Our experiments provide
encouraging results on the performance improvements that can be
obtained by adding community sensors to an existing deployment
of sparse but high quality sensors.

Community and Participatory Sensing. Community sensing has
been used effectively in a variety of problem domains. Several re-
searchers [13, 26, 17, 12, 15] have used mobile phones to monitor
traffic and road conditions. Community sensors offer great poten-
tial in environmental monitoring [18, 29] by obtaining up-to-date
measurements of the conditions participants are exposed to. Mobile
phones and body sensors are used to encourage physical activity

by categorizing body motion and comparing activities to exercise
goals [5]. Like our CSN, these applications stand to benefit from the
high density of existing community sensors, but are fundamentally
different in their aim of monitoring phenomena rather than detecting
infrequent events.

7. CONCLUSIONS
We studied the problem of detecting rare, disruptive events us-

ing community-held sensors. Our approach learns local statistical
models characterizing normal data (e.g., acceleration due to normal
manipulation of a cellphone), in an online manner. Using local
online percentile estimation, it can choose operating points that
guarantee bounds on the sensor-level false positive frequency, as
well as the number of messages sent per sensor. We then showed
how a conservative estimate of the sensors’ ROC curves can be
used to make detection decisions at a fusion center which guarantee
bounds on the false positive rates for the entire system, as well as
maximize a lower bound on the detection performance. The pes-
simistic predicted true positive rates allow us to assess whether a
given density of sensors is sufficient for the intended detection task.
This online decentralized anomaly detection approach allows us
to cope with the fundamental challenge that rare events are very
difficult or impossible to model and characterize a priori. It also
allows the use of heterogeneous, community-operated sensors that
may differ widely in quality and communication constraints.

We then presented an implementation of our approach in the Com-
munity Seismic Network (CSN), a novel community sensing project
with the goal of rapidly detecting earthquakes using cell phone ac-
celerometers and consumer USB devices. We presented empirical
evidence suggesting how cloud-computing is an appropriate plat-
form for real-time detection of rare, disruptive events, as it naturally
copes with peaked load, and is designed for redundancy and replica-
tion. We furthermore experimentally assessed the sensitivity of our
sensors, estimating and evaluating ROC curves using experiments
involving data obtained through the playback of historical earth-
quakes on shaketables. These assessments provide evidence of the
likely detection performance of the CSN as a function of the sensor
density. For example, we found that approximately 100 Android
clients, or 20 Phidgets per 20 km × 20 km area may be sufficient to
achieve close to 100% detection probability for events of magnitude
5 and above, while bounding the false positve rate by 1 per year.
While these results are very promising, they have to be taken with
some care. In particular, the results are based on the assumption
that the phones are located very close to the epicenter of the quake
(so they experience maximum acceleration). To enable coverage of
the Greater Los Angeles area, this would require a uniformly high
density of sensors (tens of thousands of sensors) across the entire
domain. We will defer the detailed study of spatial effects, and num-
bers of sensors needed to achieve spatial coverage, to future work.

We believe that our results provide an important step towards
harnessing community-held sensors to provide strong benefits for
our society.
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